The human immunodeficiency virus Tat proteins specifically associate with TAK in vivo and require the carboxyl-terminal domain of RNA polymerase II for function.
نویسندگان
چکیده
Human immunodeficiency virus types 1 and 2 encode closely related proteins, Tat-1 and Tat-2, that stimulate viral transcription. Previously, we showed that the activation domains of these proteins specifically interact in vitro with a cellular protein kinase named TAK. In vitro, TAK phosphorylates the Tat-2 but not the Tat-1 protein, a 42-kDa polypeptide of unknown identity, and the carboxyl-terminal domain (CTD) of RNA polymerase II (RNAP II). We now show that the 42-kDa substrate of TAK cochromatographs with TAK activity, suggesting that this 42-kDa polypeptide is a subunit of TAK. We also show that the Tat proteins specifically associate with TAK in vivo, since wild-type Tat-1 and Tat-2 proteins expressed in mammalian cells, but not mutant Tat proteins containing a nonfunctional activation domain, can be coimmunoprecipitated with TAK. We also mapped the in vivo phosphorylation sites of Tat-2 to the carboxyl terminus of the protein, but analysis of proteins with mutations at these sites suggests that phosphorylation is not essential for Tat-2 transactivation function. We further investigated whether the CTD of RNAP II is required for Tat function in vivo. Using plasmid constructs that express an alpha-amanitin-resistant RNAP II subunit with a truncated or full-length CTD, we found that an intact CTD is required for Tat function. These observations strengthen the proposal that the mechanism of action of Tat involves the recruitment or activation of TAK, resulting in activated transcription through phosphorylation of the CTD.
منابع مشابه
Lentivirus Tat proteins specifically associate with a cellular protein kinase, TAK, that hyperphosphorylates the carboxyl-terminal domain of the large subunit of RNA polymerase II: candidate for a Tat cofactor.
Efficient replication of human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) requires the virus transactivator proteins known as Tat. In order to understand the molecular mechanisms involved in Tat transactivation, it is essential to identify the cellular target(s) of the Tat activation domain. Using an in vitro kinase assay, we previously identified a cellular protein kinase activity,...
متن کاملViral transactivators specifically target distinct cellular protein kinases that phosphorylate the RNA polymerase II C-terminal domain.
Phosphorylation of the carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II has been implicated as an important step in transcriptional regulation. Previously, we reported that a cellular CTD kinase, TAK, is targeted by the human immunodeficiency virus transactivator Tat. In the present study, we analyzed several other transactivators for the ability to interact with CTD k...
متن کاملTrans-activation by human immunodeficiency virus Tat protein requires the C-terminal domain of RNA polymerase II.
Human immunodeficiency virus (HIV)-encoded trans-activator (Tat) acts through the trans-activation response element RNA stem-loop to increase greatly the processivity of RNA polymerase II. Without Tat, transcription originating from the HIV promoter is attenuated. In this study, we demonstrate that transcriptional activation by Tat in vivo and in vitro requires the C-terminal domain (CTD) of RN...
متن کاملPITALRE, the catalytic subunit of TAK, is required for human immunodeficiency virus Tat transactivation in vivo.
The human cdc2-related kinase PITALRE is the catalytic component of TAK, the Tat-associated kinase. Previously, we have proposed that TAK is a cellular factor that mediates Tat transactivation function. Here we demonstrate that transient overexpression of PITALRE specifically squelches Tat-1 activation of both a transfected and an integrated human immunodeficiency virus type 1 (HIV-1) long term...
متن کاملHuman immunodeficiency virus type 1 and 2 Tat proteins specifically interact with RNA polymerase II.
The Tat-responsive region (TAR) element is a critical RNA regulatory element in the human immunodeficiency virus (HIV) long terminal repeat, which is required for activation of gene expression by the transactivator protein Tat. Recently, we demonstrated by gel-retardation analysis that RNA polymerase II binds to TAR RNA and that Tat prevents this binding even when Tat does not bind to TAR RNA. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 70 7 شماره
صفحات -
تاریخ انتشار 1996